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Full-Wave Analysis of a Perfectly Conducting
Wire Transmission Line in a Double-
Layered Conductor-Backed Medium

NIELS FACHE AND DANIEL DE ZUTTER

Abstract —This paper presents a full-wave eigenmode analysis of a

wavegoide structure which consists of a double-layered conductor-backed

medium with a perfectly conducting cylindrical wire in either the top layer

or the bottom layer. The analysis starts with a Fourier series representa-

tion of the total longitudinal and transverse current components on the

wire surface, which are seen as the sources of the eigenmode of the

waveguide. The fields generated by these sources can be expressed in

terms of snitable incoming and scattered fields. Finafly, Galerkin’s method

is used to impose the boundary conditions on the wire surface. Numerical

results are presented for a typical microwire interconnection structure.

I. INTRODUCTION

I N RECENT years much theoretical effort has been

invested in the quasi-TEM and full-wave modeling of

single and coupled microstrips [1]–[6]. These efforts, com-

bined with experimental verifications of the theoretical

models, are justified because of the great importance of the

microstrip as an interconnection structure in analog and

digital applications.

Another type of interconnection for high-speed applica-

tions is the discrete wire technology. Two important’ appli-

cations of this technology are the multiwire and the mi-

crowire circuit boards which have become a center of

attraction as a new technology for the printed wiring

boards [7], [8]. They provide the necessary electrical char-

acteristics to transport high-speed digital signals in very

dense circuits.

In this paper a full-wave analysis is presented of a

simplified geometrical model of the multiwire and the

microwire boards. We suppose that the structure under

consideration consists of a double-layered conductor-

backed medium. We consider two cases. In the first case

the cylindrical wire is located in the bottom layer, i.e., in

the substrate. This corresponds to the microwire and mul-

tiwire configuration. In the second case the wire is located
in the top layer. This corresponds to the wire above

ground configuration which is used to model the bond wire

in the packaging of high-speed integrated circuits [9].
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The first purpose of our full-wave analysis is to deter-

mine the frequency range in which the structure behaves as

a quasi-TEM structure. However, our analysis allows us to

calculate the dispersion characteristics of the structure

when the latter is used in very high frequency applications.

In contrast to the microstrip analysis, very little work

has been done in modeling the multiwire and the mi-

crowire structures. To the best of the authors’ knowledge,

this paper presents the first full-wave analysis of the dis-

crete wire structure. The quasi-TEM analysis has already

been performed [10].

II. GEOMETRY OF THE PROBLEM

The structures under consideration are shown in Fig.

l(a) and (b). They consist of a double-layered Iossless

medium backed by a perfectly conducting ground plane.

Each layer has a permittivity Cr, and a permeability p,,,

i =1, 2. In the structure of Fig. l(a) the wire is located in

the top layer, while in Fig. l(b) the wire is located in the

substrate. The parameters rc, d, and H fully specify the

geometry of the structure; they are the radius of the wire,

the thickness of the substrate, and the distance from the

ground plane to the center of the wire, respectively.

III. OVERVIEW OF THE EIGENMODE ANALYSIS

We restrict the presentation of our eigenmode theory to

the analysis of the structure in Fig. l(a). The modifications

for the case of Fig. l(b) will be briefly mentioned. As we

want to determine an eigenmode of the structure in Fig.

l(a), all field components depend upon x through the

common phase factor exp ( – j~x ), where ~ represents the

propagation constant. The time dependence exp ( jat ) is

suppressed. The actual electromagnetic fields can be writ-
ten as

e(x, y,z) =l?(y, z)exp(-j~x)

h(x, y,z)=ll(y, z)exp(– j~x). (1)

The determination of an eigenmode starts from a Fourier

series representation of the total longitudinal and trans-

verse current on the wire. From this the incoming field, i.e.,

the field in the top layer in the absence of the substrate, is

calculated. As a next step we determine the scattered field

due to the presence of the substrate. The scattered field is
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Fig. 1. Cylindrical wire transmission line in a double layered, conduc-
tor-backed medium,

first calculated in the spectral domain using a TE–TM

mode decomposition [6]. Inverse Fourier transformation

yields the scattered field in the spatial domain. Finally, in

order to find an eigenmode, we impose the boundary

conditions on the surface wire, using Galerkin’s method.

These different steps in our theory are worked out in the

following sections. At the end of each section we briefly

describe the modifications for the case of Fig. l(b).

IV. INCOMING FIELD IN THE SPACE

AND SPECTRAL DOMAIN

The incoming longitudinal fields E;z and Hjz, i.e., the

fields in the top layer in the absence of

satisfy the following Hehnholtz equations:

v ‘E:,z -t Y;E;,2 = O

V2H:,2 + Y;H;>2 = O.

the ‘substrate,

(2)

Here y:= k; – f12 with k2 = kocr2pr2 and kO= U/C, while

Yz itself is defined as the root of y: with nonnegative real

or nonpositive imaginary part. Starting form (2), the in-

coming fields can be determined [1.1] from

ilEx,2(r’=rc, c#I’)
~;,2(~> 0) = ~2TG2 rc d~’ (3)

ilr’

(3G2
H~,2(r, ~) = – ~2”HX,2(r’== rc, @’)wrcd@’ (4)

o

where G2( rlr’) = j/4Hj2J(y21r – r’1). The integration is

performed over the boundary c of the wire. In (4),

HX,2(r’ = rc, +’) is the as-yet-unknown total longitudinal

magnetic field on the wire surface, while ilEX,2/i3r(r’ =

r., 0’) in (3) represents the derivative with respect to r of
the total longitudinal electric field on the wire surface. To

obtain (3) and (4) we used Green’s theorem together with

the boundary conditions on the wire; i.e., Ex z = () and

8Hx,2/8 r = O on c. As a next step, we expan’d the un-

known functions in the integrands of (3) and (4) in an

angular Fourier series:

n=+oc

HX,2 = ~ A~e:cp (jn#)
~.—~

aEx,2 _ n=+m

ar’

~ B.exp (jn@’). (5)
~m.~

The coefficients An and Bn are still unknown. From the

series (5) one can directly determine the series expansion

for the current components .l~,~ and .J, ~ on the wire. As a

starting point in the determination of the eigenmode equa-

tion, the Fourier series in (5) form an equivalent aherna-

tive for the Fourier series of the total current components

on the wire. Substituting (5) into (3) and (4), the incoming

longitudinal fields become

n=+w

Ej,2(r) = ~ rcBn~2nG2 exp ( jn+’) d+’
*=. ~ o

n= i-co

= ~ CmH~2J(y2r)exp( jn@) (6)
~=.~

with

jrc~
cn=— 2 Jn(Y2rc)% (7)

and

n.+m

= ~ DnH~)(y2r)exp(jn@) (8)
~=—~

with

jrcn
DnZ– —y2J.’(w.)A..

2
(9)

Jn and J: represent the Bessel function of the first kind of

order n and its derivative, and H~2) is the Hankel function

of the second kind of order n. The integrals appearing in

(6) and (8) are calculated in Appendix I.

If we want to determine the scattered fields due to the

presence of the substrate, it will be necessary to introduce
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the spatial Fourier transformation of all fields with respect

to the lateral y direction. In [6], the present authors

introduced a TE–TM decomposition of the Fourier trans-

formed fields. In this decomposition an arbitrary vector

W’(k,, z) is characterized by three different numbers W=,
W’ and W“:

w= Wzu=+[w’k+ w“(zJzxk)]/(p’+ k;)

k = ~UX + kYuY and k==~’+k~. (10)

The incoming fields (6) and (8) can be written as the

superposition of a TM mode:

(E’)z=A~exp [1’2(z -d)]

(~”)’ = -(jti(0,,,/r2)A~exp [r2(z - d)]

(Ez)z=(j/1’2)A~ exp[r2(~ -d)] (11)

and a TE mode:

(E”)Z = B~exp [r2(z - d)]

(H’)’ = [1’2/(jupOp,2)] B~exp [r’2(~ - d)]

(H,) ’=[B~/(apOpr2)] exp[1’2(z -d)] (12)

where r2 = (~’ + kf – k@2)1i2 = (k; – y~)l/2. A~ and

B; still have to be determined.

From (10), (11), and (12) the incoming longitudinal

fields are found to be

E~,2 = [(&4~ – kyB~)/k2] exp [r=(z – d)] (13)

and

Hj,= = [(pb2B; + k#~/a2)/k2] exp [1’2(z - d)] (14)

with

a2 = r2/(-jti~O~r2)

b’= r2/(~~PoPr2). (15)

Fourier transformation with respect to y in (6) and (8)
yields

.E;,2(ky,z)=exp[r2(z -~)le’(ky) (16)

~;,2(ky, z)=exp[r2(z -~)lw(ky) (17)

with

()rz–k, ‘[’,,=#n’~”(j/T)C. ~ (18)
2n=–ca ‘y

()

~2 – k ‘1=
h’=~n=~”(j/m-)Dn & . (19)

2n=–cc 2y

Equations (16) and (17) are valid only for z < H – r. The

details of the calculation can be found in Appendix II.

Comparing (13) and (14) with (16) and (17) finally yields

A;=(a,hz +aee’)k2exp [-r2(H- d)]

B$=(b,hZ +bee’)k2exp [- 1’2(H- d)] (20)

with

ak = a2k Y/~ ae = a2b2fl/r

b~ = a2/3/~ be= – kv/T (21)

r=k~+~2a2b2.

For the calculation of the incoming fields in the case of

Fig. l(b), the top layer is replaced by the substrate mate-

rial. The incoming fields are now defined as the fields due

to a cylindrical wire in a semi-infinite homogeneous

medium (c ,1, p,l ). Hence in (3), G2 must be replaced by

the Green’s function of a semi-infinite space (6,1, P,l) with

electric wall at z = O, while in (4) G2 must be replaced with

the Green’s function of a semi-infinite space (6,1, P.l) with

a magnetic wall at z = O. Subsequent calculations of the

incoming fields are similar to the ones presented for the

case of Fig. l(a).

V. SCATTERED FIELD IN THE SPACE

AND SPECTRAL DOMAIN

The knowledge of the incoming field, the continuity of

the tangential electric and magnetic field components

(~’, E“, H’, H“) at the dielectric interface, the zero tan-

gential electric field at the ground plane, and only outgo-

ing waves in the top layer yield the TM and TE modes for

both the top layer and the substrate. For the TM mode the

total fields in both the substrate and the top layer turn out

to be:

substrate (O < z < d)

E;= zllsinh (I’lz)

Hl” = - (~@ ’o’rl/rl)~lcosh (rlz)

Ez,l = jA1/171cosh (rlz)

top layer (z > d)

E]= A~exp[– 1’2(z-d)] +A~exp[1’2(z -

H:’ = (j~co6r2/r2)(AfeXp [– r2(z – d)]

–A~exp[r2(z– d)])

gl=-j/r2(A~exp[- r2(z-d)]

-A;exp[r2(z -d)])

with

2cr2r1A\
Al=

~r2rl sinh (rld ) + c,lI’2cosh (rld )

and

(22)

d)]

(23)

(24)

A~C= c,=rl sinh(171d) – ~,1r2cosh(r1d) AZ = ~ Al

2 cr=rl sinh(I’ld) + c,lI’2cosh(rld) 2 TM 2-

(25)

The TE mode for the two layers is given by:

substrate (O < z < d)

E/= B1 sinh (171z)

Hi= [rl/(j@pOp,J] Blcosh(rlz)

H,.1 = [BJ(uPOP,J] Sinh(rlz) (26)
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top layer (z Y d)

EJ=B~exp [-17, (z-d) ]+ B~exp[1’2(z -d)]

H;= [r,/(– jupOpr,)](BYexp[- rz(z - d)]

-Bjexp[I’,(z -d)])

H,,, = [1/( @p#,z)](ByexP [ – rz(z – d)]

+B;exp[I’,(z -d)]) (27)

with

and

(29)

The superscript sc denotes the scattered field components.

The coefficients RTM and Rm are the reflection coeffi-

cients for the TM and TE mode, respectively. From (23)

and (27) one finds the scattered longitudinal fields:

[ k Bsc)/k2]exp[- r,(z- d)] (30)ESC2= (flA; – ~ 2
x,

(
H~2 = j[(~I’2B~/(tipopr2)

-(kY@coc,z/rz)AT)]/k2)exp [- r2(z - d)].

Inverse Fourier transformation yields the scattered

tudinal fields in the top layer in the space domain:

E:2(y,z)=j+m[(BA;-kyB;)/k2]
—cc

.exp[– I’2(z-d)-jk,y]dkY

H~2(y, Z) ‘f+mj(pr2/(@P&2)~y

—w

)
– kyuoc,2/I’2A~ /k2

(31)

longi-

(32)

Xexp[–~2(z –d)–jkYy] dk,. (33)

As a last step before the construction of the eigenvalue

matrix we calculate the Fourier series decomposition of the

scattered longitudinal field on the boundary c of the wire.

For the longitudinal electric field one finds
~=+m

E:, = ~ E.exp(jn@) (34)
~=—~

with

En= .ln(y2rc)f+ m[(~RTMah – kYRT#k)h’

+ (8RTM~~– kyRTE~e)e’]

()r2– kv ‘/2
X(–l)n ~ exp [–21’2(H– d)] dkY (35)

2 .?

515

while the longitudinal magnetic field is given by

n=+m

()r2 – k ‘/2
X(-l)n * exp[--2r2(H– d)] dkY.

2y

(37)

To obtain (35) and (37) we made use of

J2rexP[~(-~+’-kYY’)-r2(z’--H)l‘~’

()r2 --k ‘/2
=27r(-l)n ~+ Jn(Y2a). (38)

2y

For the calculation of (38) we refer the reader to Appendix

II, eq. (A7), where a similar integral is calculated. The
integrals in (35) and (37) must be calculated numerically.

The integration inte~al is divided” into three parts:

[– m, – kC], [– kC, kc], and [kc,+- co]. The value of kc is
chosen such that rl and 172can be approximated by Ikyl

whle @2+ k; can be replaced by k; in the first and the

third interval. The integration over these intervals is per-

formed using Gauss–Laguerre quadrature formulas. Due

to resonant modes of the structure the integrands of (35)

and (37) exhibit a finite number of poles in the interval

[– kc, + kc]. To avoid these singularities, the original path

along the real kY axis is replaced by a new path in the

complex kY plane [6]. The integration along @S new path
is performed using a Gauss quadrature formula.

In contradistinction to the case of Fig. l(a), where the

excitation is a given incoming field in the top layer, the

source of the scattered field in the case Of Fig. Ub) is a

known incoming field in the substrate which is incident on

the top layer. The scattered field is found using a prbce-

dure similar to the one used in this section. We emphasize

that the scattered field in the substrate must also be

required to satisfy the boundary conditions at the perfectly

conducting ground plane.

VI. BUILDUP OF THE EIGIENVALLJEMATRIX

The eigenvector of the structure in Fig. l(a) is found by

expressing the equality between the total longitudinal elec-
tric (magnetic) field on the boundary of ‘the wire and the

sum of the incoming and the scattered longitudinal electric

(magnetic) field. We notice that the total longitudinal
electric field is zero on the boundary of the wire. From (6)

and (34) the electric boundary condition is expressed by

En+ CnH~2)(y2rc) = 0, ,tz=o, *l, *2,””” (39)
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while the magnetic boundary conditions from (8) and (36)

give

Fn+DnH~2)(y2re) =An, rz=O, izl, +2,0... (40)

When the Fourier series (5) are restricted to the first

2N+ 1 elements (n= O, *1,.. ., + N), eqs. (39) and (40)1

form a homogeneous set of 4N + 2 equations in 4N + 2

unknowns (A., Bn, n = O, ~1,. o“, + N) which has only

nontrivial solutions for discrete eigenvalues /?. These /3

values are found by using a routine which determines the

zeros of a nonlinear function.

In the case of Fig. l(b) we impose the same boundary

conditions at c and arrive at a similar set of eigenvalue

equations.

VII. NUMERICAL RESULTS

The main purpose of this paper was the presentation of

a full-wave analysis technique for the perfectly conducting

wire transmission line in a double-layere.d conductor-

backed medium. Consequently, we restrict the numerical

results presented in this section to a single typical discrete

wire configuration. In this example the bottom layer is al
nonmagnetic dielectric substrate with ~,= 4 while t-he

half-infinite top layer is air (t, = 1). The ratio of the radius

of the cylinder rc to the thickness of the substrate remains

fixed at rc /d = 0.25. Fig. 2 shows the effective dielectric

constant as a function of the ratio d/A o ( Ao: wavelength

in zracuo ) for four positions of the cylinder. The position of

the cylinder is expressed by the ratio II/d. The four cases

we consider are H/d = 0.5, 0.75, 1.25, and 1.5. In the first

two cases the wire is located in the substrate, while in the

last ones the wire is located in the air. In the cases

H/d = 0.75 and H/d= 1.25 the cylinder touches the

air–substrate interface. The dispersion is strongest if H/d
=1.5. This is a result of the confinement of the electro-

magnetic field by dielectric guiding of the substrate as the

frequency increases. We have checked the accuracy of our

results in two ways. The results obtained while changing

tlie number of terms in the Fourier series (5) from 3

(n= O,+ 1) to more than 3 do not change more than 0.05

percent. As a second check we analyzed the structures

considered in [10] in the quasi-TEM (d/A o ~ O) limit.

Within the accuracy with which numerical data can be

obtained from the curves printed in [10], our results differ

less than 2 percent from the ones in [10].

VIII. CONCLUSION

This paper presents an analytical technique for the anal-

ysis of a perfectly conducting cylindrical wire transmission

line in a layered medium. The method is exemplified for a

wire in the top layer of a double-layered conductor-backed

medium. The modifications for a wire in the substrate are

briefly mentioned. The method can be extended to 10SSY

wires either with or without coating and to multilayer

structures. The numerical implementation of the technique

shows that the angular Fourier series for the total longitu-

dinal magnetic field at the wire and for the radial deriva-
tive of the total electric, field at the wire, which are the,.
actual starting points for the elgenmode calculations, can

be truncated to three terms (n = O, + 1 in (39) and (40)) to

yield accurate results for the configuration under study.

This indicates that our analytical technique leads to an

eigenvalue matrix of small dimensions, which can easily be
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handled numerically. The numerical results in this paper

are restricted to a typical discrete wire structure.

As a next step in our research the characteristic

impedance associated with the mode propagating along a

wire will be determined and the coupling between wires in

a layered medium will be studied in detail. The results will

be presented in a forthcoming paper.

APPENDIX I

SERIES EXPANSION OF THE INCOMING

LONGITUDINAL FIELDS

To calculate the integrals in (6) and (8) we use the

following addition theorem of the Bessel functions [12]:

m=+m

HJ2)(y21r’– rl) = ~ .Jm(y2r’)H~2)(y2r)

.exp [jrn($ -@’)]. (Al)

Substitution of (Al) into the integrals of (6) and (8) and

interchanging the integration and the summation yields

J2“G2 exp (jn+’) dq5’= ‘~ J.(y2rc)H~2)(y2r) exp (jn@)
o

(A2)

and

/

z. (?G2
~ ~ exp ( jn+’) d$’

= ‘~~;(Y2rc)H~)(y2 r)exp(jn@). (A3)
L

APPENDIX II

FOURIER TRANSFOWTION OF THE INCOMING

LONGITUDINAL FIELDS

The Fourier transformation of the incident longitud-

inal field reduces to the Fourier transformation of

HJ2)(y2r) exp (jn@). The latter can be done analytically.
We define a function F.(kY):

F. (k,)= ~ ~_+‘J. (y2rc).HJ2J(y2r) exp [ j(rz~+ kYY)] dy.
m

(A4)

Using the addition theorem of Appendix I, the function

F.( kY) can be rewritten as

*J:mexP(&yY)dYF&) = ~

~2m~~2’(y21r’-rl)exp(~n+’)d@’. (A5)
o

Interchanging the integration order in (A5) and using the

Fourier transformation of the Hankel function of the

second kind and the zeroth order [13],

f
‘mH~2)(Y21/-rl)exp [jk,(y – Y’)] d~

—’x

exp(– rzlz – z’1)
= Zj

r2
(A6)

we finally arrive at

Fm(kY) =2j
exp[1’2(z -H)]

(2n)2r2

~27exp[~(~@’+~.Yy’)-r*(z’-~)l ‘$’ Z<z’ (A7’)
To perform the integration over (p’ we use the following

generating function of the Bessel functions and series

associated with it [13]:
??I=+m

exp(jzsine) = ~ exp(jmd)~n(z) (A8)
1’72=-CC

where z is an arbitrary complex number. This series ex-

pansion is applied to exp ( – jkYy’) and exp [ – 172(z’ – H)]:

exp ( jk “y’) = exp ( jrckv cos +’)

I’?l=+W

= ~ j~exp( - jm~’){,,(kyr~.)
~~=—~

exp [– r2(z’– H)] = exp(– r,r~,sin~’)

k=+w

= ~ exp( jk#).Tk( jrC172). (A9)
k=–w

Inserting (A9) into (A7) enables us to perform the integra-

tion over +’ in (A9):

~2mexp[j(ndJ+kYy’) -r*(z’- Y)] d+’

m=+cc

= 2W ~ jmJ~(kyrL) Jw1_,1(jrcr2). (A1O)
~=.~

Finally, the series in (A1O) is written in closed form using

another addition theorem for the Bessel functions [13]:

( )zl–z2exp(–jO) ‘“2
Jv(w)

zl–z2exp(+ j@)

n=+’x

= ~ J.(z2)J.+,(zl)exp( jne)
~=—~

(
1/2

w = z; + z; –2z1z2c05e )

=([%-z2exP(-jfl)] [zl--z2exp(jd)] )’/2 (All)

with ZI and Z2 two arbitrary complex arguments and v an

arbitrary complex number. Using (Al 1). (A1O) leads to

~2”exp[j(n&+kYy’) -r*(z’- H)] d+’

()

r2 – k, “2
=2T —

rz +%
J~(y2a). (A12)

Applying (A12) in (A7) yields the final expression for

F.(kY):

()exp[r2(z– H)] I’2-kY ‘“2
F.(k,) = j J?z(Y2rc).

~ r2 r2 + kY

(A13)

AS JH(y2rc) is a constant, (A13) and (A4) immediately lead
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to the final result we searched for, i.e.,

1

–J
‘~H~2J(y2r)exp [j(n@ + kYY)] ‘.

2V .~

Mexp[I’z(z -H)] 172-kY “2
=j

172+kY “
(A14)

Ii’ r2

[12] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and
Theorems for the Special Functions of Mathematical Physics, 3rd ed.
Berlin: Springer Verlag, 1966.

[13] G. N. Watson, Theory of Bessel Functions, 2nd ed. Cambridge:
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