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Full-Wave Analysis of a Perfectly Conducting
Wire Transmission Line in a Double-
Layered Conductor-Backed Medium

NIELS FACHE anp DANIEL DE ZUTTER

Abstract —This paper presents a full-wave eigenmode analysis of a
waveguide structure which consists of a double-layered conductor-backed
medium with a perfectly conducting cylindrical wire in either the top layer
or the bottom layer. The analysis starts with a Fourier series representa-
tion of the total longitudinal and transverse current components on the
wire surface, which are seen as the sources of the eigenmode of the
waveguide. The fields generated by these sources can be expressed in
terms of suitable incoming and scattered fields. Finally, Galerkin’s method
is used to impose the boundary conditions on the wire surface. Numerical
results are presented for a typical microwire interconnection structure.

1. INTRODUCTION

N RECENT years much theoretical effort has been

invested in the quasi-TEM and full-wave modeling of
single and coupled microstrips [1]-[6]. These efforts, com-
bined with experimental verifications of the theoretical
models, are justified because of the great importance of the
microstrip as an interconnection structure in analog and
digital applications.

Another type of interconnection for high-speed applica-
tions is the discrete wire technology. Two important appli-
cations of this technology are the multiwire and the mi-
crowire circuit boards which have become a center of
attraction as a new technology for the printed wiring
boards [7], [8). They provide the necessary electrical char-
acteristics to transport high-speed digital signals in very
dense circuits.

In this paper a full-wave analysis is presented of a
simplified geometrical model of the multiwire and the
microwire boards. We suppose that the structure under
consideration consists of a double-layered conductor-
backed medium. We consider two cases. In the first case
the cylindrical wire is located in the bottom layer, i.e., in
the substrate. This corresponds to the microwire and mul-
tiwire configuration. In the second case the wire is located
in the top layer. This corresponds to the wire above
ground configuration which is used to model the bond wire
in the packaging of high-speed integrated circuits [9].
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The first purpose of our full-wave analysis is to deter-
mine the frequency range in which the structure behaves as
a quasi-TEM structure. However, our analysis allows us to
calculate the dispersion characteristics of the structure
when the latter is used in very high frequency applications.

In contrast to the microstrip analysis, very little work
has been done in modeling the multiwire and the mi-
crowire structures. To the best of the authors’ knowledge,
this paper presents the first full-wave analysis of the dis-
crete wire structure. The quasi-TEM analysis has already
been performed [10].

II. GEOMETRY OF THE PROBLEM

The structures under consideration are shown in Fig.
1(a) and (b). They consist of a double-layered lossless
medium backed by a perfectly conducting ground plane.
Each layer has a permittivity €,, and a permeability g,
i=1, 2. In the structure of Fig. 1(a) the wire is located in
the top layer, while in Fig. 1(b) the wire is located in the
substrate. The parameters r,, d, and H fully specify the
geometry of the structure; they are the radius of the wire,
the thickness of the substrate, and the distance from the
ground plane to the center of the wire, respectively.

1II. OVERVIEW OF THE FIGENMODE ANALYSIS

We restrict the presentation of our eigenmode theory to
the analysis of the structure in Fig. 1(a). The modifications
for the case of Fig. 1(b) will be briefly mentioned. As we
want to determine an eigenmode of the structure in Fig.
1(a), all field components depend upon x through the
common phase factor exp(— jBx), where B represents the
propagation constant. The time dependence exp( jwt) is
suppressed. The actual electromagnetic fields can be writ-
ten as

e(x,y.z) =E(y,z)exp(— jx)
k(x,y,z) =H(y.z)exp(— jBx). (1)

The determination of an eigenmode starts from a Fourier
series representation of the total longitudinal and trans-
verse current on the wire. From this the incoming field, i.e.,
the field in the top layer in the absence of the substrate, is
calculated. As a next step we determine the scatfered field
due to the presence of the substrate. The scattered field is
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Fig. 1. Cylindrical wire transmission line in a double layered, conduc-

tor-backed medium.

first calculated in the spectral domain using a TE-TM
mode decomposition [6]. Inverse Fourier transformation
yields the scattered field in the spatial domain. Finally, in
order to find an ecigenmode, we impose the boundary
conditions on the surface wire, using Galerkin’s method.
These different steps in our theory are worked out in the
following sections. At the end of each section we briefly
describe the modifications for the case of Fig. 1(b).

IV. InNcoMiING FIELD IN THE SPACE

AND SPECTRAL DOMAIN
The incoming longitudinal fields E; , and H, ,, i.e., the
fields in the top layer in the absence of the substrate,
satisfy the following Helmholtz equations:

2E12+72E;2_0
2Hl2+72H;lc2 0.

2)

Here v} = k2 — B? with k, = k,,t,, and ko= w/c, while
v, itself is defined as the root of y} with nonnegative real
or nonpositive imaginary part. Starting form (2), the in-
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coming fields can be determined [11] from

JIE, (r r., )
Elo(re) = [0, dy ()
Hia(r8) == [THA =) 5 2rdy (@

where G,(r|r’) = j/AHP(y,lr — r'). The integration is
performed over the boundary ¢ of the wire. In (4),
H, ,(r'=r,¢") is the as-yet-unknown fotal longitudinal
magnetic field on the wire surface, while JE, ,/dr(r'=
r.,¢") in (3) represents the derivative with respect to r of
the rotal longitudinal electric field on the wire surface. To
obtain (3) and (4) we used Green’s theorem together with
the boundary conditions on the wire; ie., E,,=0 and
dH, ,/3r=0 on c. As a next step, we expand the un-
known functions in the integrands of (3) and (4) in an
angular Fourier series:

n=+oco
Hx,2= Z Anexp(jnqb/)
n=-—-0o0
8Ex2 n= -+ 00
o= ¥ Bexp(jng). (5)
r n=-—00

The coefficients A, and B, are still unknown. From the
series (5) one can directly determine the series expansion
for the current components J, , and J, , on the wire. As a
starting point in the deterrmnatlon of the eigenmode equa-
tion, the Fourier series in (5) form an equivalent alterna-
tive for the Fourier series of the total current components
on the wire. Substituting (5) into (3) and (4), the incoming
longitudinal fields become

n= + o]

Ea()= % B[ G e (ing)dy
n=-—c0
n=-+o0

Y GHP(v,r)exp(jnd)

n=—o0

(6)
with

Cn ]c -, (YZr)B

(7)

and

n=+o

2W8G
H,(rn=- % rc.Anfo 2 exp (jng’) do’

’
n=—00 ar

n=-+oo

Y DHP(vr)exp(jnd)

n=-—oo

(8)

with
Jram

: ©)

J, and J, tepresent the Bessel function of the first kind of
order n and its derivative, and H/? is the Hankel function
of the second kind of order n. The integrals appearing in
(6) and (8) are calculated in Appendix L.

If we want to determine the scattered fields due to the
presence of the substrate, it will be necessary to introduce

‘Dn= - ‘YZ‘]n,(‘Yerc)An‘
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the spatial Fourier transformation of all fields with respect
to the lateral y direction. In [6], the present authors
introduced a TE-TM decomposition of the Fourier trans-
formed fields. In this decomposition an arbitrary vector
W(k,, z) is characterized by three different numbers W,
W’ and W"':

W=Wu,+|[Wk+W'(u,xk)|/(B>+k2)
and k*=B>+k;.

k=pu,+ku, (10)

The incoming fields (6) and (8) can be written as the
superposition of a TM mode:

(E")' = Ayexp[Ty(z - d)]
(H")' = = (joe,,/T,) dyexp [Io(z - d)]
(E.)' = (j/T) Apexp [Ty(z - d)]
and a TE mode:
(E”)' = Bjexp [Ty(z — d)]
(H)' =T, /(jeopot,,)] Bsexp [T(z — d)]

(H,)' = [Bs/(wpop,,)]exp[Ih(z—d)]  (12)

where T,=(B>+k}~kiN*)/*=(k;~y;)"/* A, and
B; still have to be determined.

From (10), (11), and (12) the incoming longitudinal
fields are found to be

El,=[(B4y—k,B)/k>| exp [Ly(z— d)]

(11)

(13)
and
Hy,=[(Bb:Bs + k43 /ay) /K] exp [Ty(z~ )] (14)
with
a,=T,/(jweg,,)
by =T, /(jwpot,2)- (15)

Fourier transformation with respect to y in (6) and (8)
yields

(16)
(17)

E;,(ky,z) =exp[T,(z — H)]e'(k,)
H;,Z(ky’ Z) = €Xp [F2(z - H)] hl(ky)

with
, n=too \c T~k \""? 18)
e_r2n=—°°(.]/'” n T2+ky (
n=+co I‘z_k n/2
h'=— j/w) D, >
m I mp|gy (19)

Equations (16) and (17) are valid only for z < H—r. The

details of the calculation can be found in Appendix II

Comparing (13) and (14) with (16) and (17) finally yields
Ay =(a,h'+ ae')ktexp [~ T,(H—d)]

By=(b,h'+be' )klexp|-T,(H-d)]  (20)
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with
ay=ak,/t a,=ab,B/T
b,=a,B/7 b=—k,/T
T= ki + B2%a,b,.

(21)

For the calculation of the incoming fields in the case of
Fig. 1(b), the top layer is replaced by the substrate mate-
rital. The incoming fields are now defined as the fields due
to a cylindrical wire in a semi-infinite homogeneous
medium (e,;, ¢,;). Hence in (3), G, must be replaced by
the Green’s function of a semi-infinite space (e,q, it,) with
electric wall at z =0, while in (4) G, must be replaced with
the Green’s function of a semi-infinite space (¢, ft,) with
a magnetic wall at z=0. Subsequent calculations of the
incoming fields are similar to the ones presented for the
case of Fig. 1(a).

V. ScCATTERED FIELD IN THE SPACE
AND SPECTRAL DOMAIN

The knowledge of the incoming field, the continuity of
the tangential electric and magnetic field components
(E’,E”,H', H") at the dielectric interface, the zero tan-
gential electric field at the ground plane, and only outgo-
ing waves in the top layer yield the TM and TE modes for
both the top layer and the substrate. For the TM mode the
total fields in both the substrate and the top layer turn out
to be:

substrate (0 < z < d)

E{ = A;sinh (T,z)
H/'=—(jwes, /T)) A cosh(I;z)
E, = jA;/Tcosh(Tyz)
top layer (z > d)
Ef=ASexp[—T,(z = d)] + Ayexp[T5(z — d)]

HY = (joeg,o/ D) (A5 exp[-T,(z - d)]
~ Abexp [Ty(z — 4)])

E, =- j/I‘z(AS;exp[—— Ty(z— d)]
— dsexp [Ty(z —d)])

(22)

(23)

with
4, = ___alif (24)
€,, I sinh(I,d)+ ¢, T,cosh(I}d)
and
€,y sinh (I'd) — €,,,cosh (T,d)
= ¢ T.sinh(Iyd) + e Toosh (T,d) 12~ Romda:
(25)

The TE mode for the two layers is given by:
substrate (0 < z < d)

E/” = B, sinh(T}z)
Hi = [rl/(jwM‘Onurl)] B, cosh(I‘lz)

H,,= [Bl/(w:u‘O:u'rl)] sinh (Tz) (26)
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top layer (z>d)
Ty(z~d)] + Biexp [T, (z - d)]
HY = [T,/(= jonop,2)| (Bs exp [ - Ty(z - d)]
~ Bjexp [Iy(z = d)])
H,,= [1/(wy0yr2)](B§°exp[— 0,(z—d)]

= Bffexp [~

+ Byexp [,(z = d)]) (27)

with
2p .1, B}
Bl= : MalaBs (28)
paT;sinh(Tyd) + p,,Tycosh (Thd )
and
o Balysinh (T d)—p,Tcosh(ld)
B3 = = ReB;.

p, T, sinh (Tyd ) + p,, Ty cosh (Tyd) 2
(29)

The superscript sc denotes the scattered field components.
The coefficients Rpy, and Ry are the reflection coeffi-
cients for the TM and TE mode, respectively. From (23)
and (27) one finds the scattered longitudinal fields:

Ex, = [(BAF — k,B5) /k?| exp[ - Ty(z - d)]
H = (J[( BT B/ (wpon,»)
- (ky"’fofrz/rz)Aszc)]/kz) exp [ -Ty(z- d)] .
(31)

Inverse Fourier transformation yields the scattered longi-
tudinal fields in the top layer in the space domain:

Em(r.2) = [ [(a5~k,B5) /6]
-exp[— L(z—d)- jkyy] dk,
H¥(y,2) = f BF /(@popt,2) B3

— kyweg,, /T, A5) /K>
Xexp [~ Ty(z = d) - jk,y] dk,.

(30)

BAS -

(32)

(33)

As a last step before the construction of the eigenvalue
matrix we calculate the Fourier series decomposition of the
scattered longitudinal field on the boundary c of the wire.
For the longitudinal electric field one finds

n=-+o0
EX,= ) E,exp(jn9) (34)
n=—00
with
+ 00
En=Jn(‘Y2rc)f7 [(BRTMah_kyRTEbh)hl
+(BRma,— k,Rgb,)e']
k n/2
x(-1)" (I‘2+k exp |- 2I,(H—d)] dk, (35)
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while the longitudinal magnetic field is given by

n=+o00

Y. Fexp(jno)

n=—o0

HZ, = (36)
with
E,=J,(v:1.) f J([BTaReby/(ok2)

- kyweoerzRTMah/TZ] h'

+ [.BrzRTEbe/(wMoHrz) - kwaoerZRTMae/FZ] e’)

—k,
(-1 (r iy

n/2
) exp[—20,(H - d)]| dk,.

(37)

To obtain (35) and (37) we made use of

[ (= o= k)= Ly 1) dos

T,k n/2
=27(-1)" (1‘4 k'v) J.(va). (38)

For the calculation of (38) we refer the reader to Appendix
II, eq. (A7), where a similar integral is calculated. The
integrals in (35) and (37) must be calculated numerically.
The integration interval is divided into three parts:
[-o0,— k], [—k,, k., and [k, + co]. The value of k_ is
chosen such that T, and T, can be approximated by |k,
while 82+ k} can be replaced by k2 in the first and the
third 1nterval The integration over these intervals is per-
formed using Gauss—Laguerre quadrature formulas. Due
to resonant modes of the structure the integrands of (33)
and (37) exhibit a finite number of poles in the interval
[— k., + k. To avoid these singularities, the original path
along the real k, axis is replaced by a new path in the
complex k, plane [6]. The integration along this new path
is performed using a Gauss quadrature formula.

In contradistinction to the case of Fig. 1(a), where the
excitation is a given incoming field in the top layer, the
source of the scattered field in the case of Fig. 1(b) is a
known incoming field in the substrate which is incident on
the top layer. The scattered field is found using a proce-
dure similar to the one used in this section. We emphasize
that the scattered field in the substrate must also be
required to satisfy the boundary C()Ildlthl’lS at the perfectly
conducting ground plane.

VL BUILDUP OF THE EiGENVALUE MATRIX

The eigenvector of the structure in Fig. 1(a) is found by
expressing the equality between the total longitudinal elec-
tric (magnetic) field on the boundary of the wire and the
sum of the incoming and the scattered longitudinal electric
(magnetic) field. We notice that the total longitudinal
electric field is zero on the boundary of the wire. From (6)
and (34) the electric boundary condition is expressed by

E, + C,HP(y,r,)=0, n=0,4+1,+2,--- (39)
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2. Effective dielectric constant as a function of the dimensionless ratio (d /A) for four different positions of the wire in the
configuration of Fig, 1 (r, /d = 0.25, H/d = 0.5,0.75,1.25, 1.5).

while the magnetic boundary conditions from (8) and (36)
give '
F,+DH®(y,r,)=A4,,  n=0,+1,+2,---. (40)

When the Fourier series (5) are restricted to the first
2N +1 elements (n=0,+1,---,+ N), eqgs. (39) and (40)
form a homogeneous set of 4N +2 equations in 4N +2
unknowns (4,,B,, n=0,%1,---,+£ N) which has only
nontrivial solutions for discrete eigenvalues B. These f
values are found by using a routine which determines the
zeros of a nonlinear function.

In the case of Fig. 1(b) we impose the same boundary
conditions at ¢ and arrive at a similar set of eigenvalue
equations.

VIL

The main purpose of this paper was the presentation of
a full-wave analysis technique for the perfectly conducting
wire transmission line in a double-layered conductor-
backed medium. Consequently, we restrict the numerical
results presented in this section to a single typical discrete
wire configuration. In this example the bottom layer is a
nonmagnetic dielectric substrate with ¢, =4 while the
half-infinite top layer is air (e, =1). The ratio of the radius
of the cylinder r, to the thickness of the substrate remains
fixed at r, /d =0.25. Fig. 2 shows the effective dielectric
constant as a function of the ratio d /A, (A, wavelength
in vacuo) for four positions of the cylinder. The position of
the cylinder is expressed by the ratio H/d. The four cases
we consider are H/d = 0.5, 0.75, 1.25, and 1.5. In the first
two cases the wire is located in the substrate, while in the

NUMERICAL RESULTS

last ones the wire is located in the air. In the cases
H/d=075 and H/d=1.25 the cylinder touches the
air-substrate interface. The dispersion is strongest if H/d
=1.5. This is a result of the confinement of the electro-
magnetic field by dielectric guiding of the substrate as the
frequency increases. We have checked the accuracy of our
results in two ways. The results obtained while changing
the number of terms in the Fourier series (5) from 3
(n=0,+1) to more than 3 do not change more than 0.05
percent. As a second check we-analyzed the structures
considered in {10] in the quasi-TEM (d/A,— 0) limit.
Within the accuracy with which numerical data can be
obtained from the curves printed in [10], our results differ
less than 2 percent from the ones in [10].

VIIL

This paper presents an analytical technique for the anal-
ysis of a perfectly conducting cylindrical wire transmission
line in a layered medium. The method is exemplified for a
wire in the top layer of a double-layered conductor-backed
medium. The modifications for a wire in the substrate are
briefly mentioned. The method can be extended to lossy
wires either with or without coating and to multilayer
structures. The numerical implementation of the technique
shows that the angular Fourier series for the total longitu-
dinal magnetic field at the wire and for the radial deriva-
tive of the total electric field at the wire, which are the
actual starting points for the eigenmode calculations, can
be truncated to three terms (n =0, -1 in (39) and (40)) to
yield accurate results for the configuration under study.
This indicates that our analytical technique leads to an
eigenvalue matrix of small dimensions, which can easily be

CONCLUSION
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handled numerically. The numerical results in this paper
are restricted to a typical discrete wire structure.

As a next step in our research the characteristic
impedance associated with the mode propagating along a
wire will be determined and the coupling between wires in
a layered medium will be studied in detail. The results will
be presented in a forthcoming paper.

APPENDIX 1
SERIES EXPANSION OF THE INCOMING
LONGITUDINAL FIELDS

To calculate the integrals in (6) and (8) we use the
following addition theorem of the Bessel functions [12]:

m=+ o0

Z Jm(Yz"')HrEaz)(Yz”)

m=—o0

H(@(YZV/_ r) =

-exp [ jm(o—¢)]. (A1)

Substitution of (Al) into the integrals of (6) and (8) and
interchanging the integration and the summation yields

"o exo( 1 i .
[ Gaexp (ing') do’ = S0, (127 B (ar ) exp (jd)
(42)

and

2n 0G , ,
[ == exp (jng') do
o Odr

Jv.m .
== T (vor, ) HP (vor)exp (jng). (A3)
APPENDIX [1
FOURIER TRANSFORMATION OF THE INCOMING

LoNGITUDINAL FIELDS

The Fourier transformation of the incident longitud-
inal field reduces to the Fourier transformation of
H{P(y,r)exp(jne). The latter can be done analytically.
We define a function F,(k,):

F,(k,) =

+o0
=) R HP (nr)exp | j(ne+k, )] dv.
(A4)

Using the addition theorem of Appendix I, the function
F,(k,) can be rewritten as

F,,(ky) = é?fj:exp(jkyy) dy

27
[THE (ol = ) exp (jng) d'. (AS)

Interchanging the integration order in (A5) and using the
Fourier transformation of the Hankel function of the
second kind and the zeroth order [13],
+ o0 5 , . ,
[ TH@ (vl = r)exp [k, (y = )] dy
- o0

.exp(— Lylz - z')
J
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we finally arrive at

exp|[,(z—
F(k,) =2 p[(zﬂ()er)]

.j;zwexp[j(n¢/+ k'vy’)—Tz(z'—H)] do’, z<z'. (A7)

To perform the integration over ¢’ we use the following
generating function of the Bessel functions and series
associated with it [13]:

nm=+o0

)y

m=-—00

(A8)

exp(jzsinf) = exp(jmb)J,(z)

where z is an arbitrary complex number. This series ex-
pansion is applied to exp(— jk,y’) and exp[ - I,(z' — H)]:
€Xp (kay/) = exp ( jrcky ©os ¢l)

m=+co

= Y jmexp(— jm¢)J,(k,r)
exp[—T,(z'~ H)] =exp(—7.I; sin¢)
k= -+ o0
= Y exp(jk¢’) T (jr.Ly). (A9)

k=00

Inserting (A9) into (A7) enables us to perform the integra-
tion over ¢’ in (A9):

/qurexp [j(nq>’+ kyy’) -0,(z'— H)] do’
m=+o0 ’

=27 Y. j" (ko )T, (jrTy). (A10)

m= —oo

Finally, the series in (A10) is written in closed form using
another addition theorem for the Bessel functions [13]:

. v/2
- zzexp(— ]0) /
. J(w)
z,— z,exp(+ jo)
n=+oo
= Z Jn(ZZ)Jn+V(Zl)eXp(jn0)
n=-o0o
w=(z{ + z5 —2z,z,c0s 0)1/2

. . 1/2

= ([2,— z,exp(— j0)][ 21— z,exp (J6)]) " (A11)

with z; and z, two arbitrary complex arguments and » an
arbitrary complex number. Using (A1l), (A10) leads to

fohexp [j(ne'+ k,y)=To(z'— H)| do/

n/2
T,—k,
20| 2 —i) J(va). (A12)

L+k,

Applying (A12) in (A7) yields the final expression for
F(k,):

I‘2 - ky
T,+k,

CXp [Fz(z - H)] (

n/2
J (v,r.).
'7Tr2 ) n(.YZ L)

(A13)
As J,(v,r,) is a constant, (A13) and (A4) immediately lead
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to the final result we searched for, ie.,

1 + o0
oy f_w HP(v,r)exp| j(no+k,y)] dv

(1]

(21

[4]
(3]
(6]
(7]
(8]

(]

(10]

(1]

exp[Ty(z~ H)] I,—k, "/
=j — . (A14)
7T, L +k,
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